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What is Deep Learning (DL)?

▪ Deep Learning leverages layers of neurons that form connections, transform data, and 

extract insights for regression, classification, ranking, forecasting, risk analysis, data 

mining, data compression, and generative AI

▪ Consists of several layers including:

▪ Input: Receives raw data (tabular, audio, videos, images, and text)

▪ Hidden: Each layer transforms data into meaningful representations understood by 

the network (called feature maps or embeddings)

▪ Output: Gives final output(s) to user

▪ Weights are connecting neurons between layers, update through backpropagation

▪ Starts as random number, then optimized during training (epochs) to better values
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Neural Networks for Predictive Analytics

▪ Neural Networks can be designed for regression or classification by output layer function

▪ Regression Network → Output function: Linear activation function

▪ Classification Network → Output function: Sigmoid (binary classification) or Softmax 
(multiple classification) activation function

▪ Networks require significant amounts of labeled data to correctly map results and generalize 
to unseen data

▪ Feature engineering is automatically handled by the network → layers transform data for you

▪ Networks can estimate non-linear, multi-dimensional decision boundaries and prediction 
functions
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Visualizing a Simple Dense Network

5

Input Layer 
(3-

Features)
Hidden Layer

(1-Neuron)
Output Layer

(1-Neuron)

Each Input Layer Neuron connects to the 5-
Neurons in the Hidden Layer.
3 × 1 = 3 total connections. 

Each Hidden Layer Neuron connects to 
the 1-Neuron in the Output Layer.

1 × 1 = 1 total connection. 
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Visualizing a Hidden Layer with Multiple Neurons
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Input Layer 
(3-Features)

Hidden Layer
(5-Neurons)

Output Layer
(1-Neuron)

Each Input Layer Neuron connects to the 
5-Neurons in the Hidden Layer.
3 × 5 = 15 total connections. 

Each Hidden Layer Neuron connects to the 
1-Neuron in the Output Layer.
5 × 1 = 5 total connections. 



Neural Networks for Content Generation

▪ Convolutional Neural Networks (CNNs) extract features, characteristics, and 
edges from images

▪ Preserves information from nearby pixels in images → spatial associations

▪ Useful for object detection, image segmentation, and classification tasks

▪ Neural Networks are also powerful generative models

▪ Variational Autoencoders (VAEs) learn the distribution that training data come 
from and attempt to generate new observations from learned distribution

▪ Generative Adversarial Networks (GANs) involve a feedback-Network that 
rates the quality of generated observations from the generative Network

▪ Network continues training until it produces output deemed high quality

▪ I
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Visualizing a Convolutional Neural Network
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Convolutional Neural Networks (CNNs)

▪ Examines relationships between features using moving windows that shift across 
dataset

▪ Kernels (also called filters) scan vectors (columns) or multi-dimensional arrays (i.e., 
images, matrices) to identify signals, patterns, and edges

▪ Naturally handles unstructured data types → automatic feature extraction

▪ Base layers identify key characteristics / patterns, middle layers target finer-details, 
and last layers focus on fine-tuning to specific task / industry / objective

▪ Designed to recognize patterns, extract meaningful identifiers, and parse data to create 
feature maps from original data

▪ Does not maintain memory of previous inputs → each input assumed independent
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How Feature Mapping Works

10



Visualizing a Recurrent Neural Network
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Recurrent Neural Networks (RNNs)

▪ Inputs are assumed dependent on each other → nearby time steps, or words in a 
sequence, are assumed associated (not independent)

▪ RNNs maintain memory and move one-by-one across time steps / words in sequence

▪ RNN takes new input and combines next input with memory (hidden state)

▪ Gives prediction and loop continues, sequentially, until all inputs are exhausted

▪ Suffers from vanishing gradient problem → long-term memory is forgotten and 
information from early hidden states not used

▪ Long Short-Term Memory (LSTM) introduce gates (what info to remember / forget)

▪ Gated Recurrent Units (GRU) are simpler memory managers than LSTMs, faster but 
less complex
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Exploring the Next Frontier with 
Generative AI Workflows

Harnessing encoder, decoder, and hybrid transformer 

models to create content, capture context, and enable 

reasoning with information retrieval.
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Generative AI Architectures

▪ Transformers key to generative AI workflows → parallelize attention layers in neural 

networks and replace sequential networks such as RNNs and LSTMs

▪ Encoder-Only architectures excel at representation learning, embeddings, and 

retrieval; power search, classification, and semantic similarity

▪ Create contextual representations (vector embeddings) from input tokens

▪ Examples include BERT and RoBERTa

▪ Decoder-Only architectures provide autoregressive generation for text, code, 

simulations, and creative tasks; optimized for long-form output

▪ Each output token only focuses on previous token(s), does not see ahead of current 

token → examples include GPT family & LLaMa family 
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Generative AI Architectures

▪ Encoder-Decoder architectures are ideal for translation, summarization, multimodal 

reasoning; integrate comprehension + generation

▪ Encoder-part transforms input sequence to vector embeddings

▪ Decoder-part consumes vector embeddings and generates output sequence

▪ Encoder-part builds a rich representation by reading entire input sequence and 

transforming into latent (vector) space

▪ Decoder generates tokens one-at-a-time using casual attention to maintain 

sequence order

▪ Unlike Decoder-Only architectures, Encoder-Decoder transformers excel at 

summarization and translation tasks by focusing generation guided by input context
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Retrieval-Augmented Generation (RAG)

▪ Bridges search + generation: Combines external knowledge retrieval with large 

language models (LLMs) to improve factual accuracy

▪ Retriever module: Fetches relevant documents or embeddings from a vector database 

or search index based on the query

▪ Vector Databases: Purpose-built for storing and searching vector embeddings

▪ Enables fast similarity search and semantic retrieval to power RAG, 

recommendations, and multimodal AI

▪ Generator module: Conditions its response on both the input query and retrieved 

content, ensuring grounded outputs

▪ Good for Q/A systems, chatbots, & technical documentation search
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Retrieval-Augmented Generation (RAG)
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Agentic AI Workflow
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