
Ryan Paul Lafler

Deep Learning (DL) Architectures 
and Transfer Learning for Tabular, 

Unstructured, Sequential and 
Time-Dependent Data

https://www.premier-analytics.com/


Deep Learning (DL) 
Fundamentals and Architectures

Understanding neural networks for tabular, 

unstructured, and time-dependent data.

Deep Learning Architectures |  Premier Analytics Consulting, LLC

https://www.premier-analytics.com/


What is Deep Learning (DL)?

▪ Deep Learning leverages layers of neurons that form connections, transform data, and 

extract insights for regression, classification, ranking, forecasting, risk analysis, data 

mining, data compression, and generative AI

▪ Consists of several layers including:

▪ Input: Receives raw data (tabular, audio, videos, images, and text)

▪ Hidden: Each layer transforms data into meaningful representations understood by 

the network (called feature maps or embeddings)

▪ Output: Gives final output(s) to user

▪ Weights are connecting neurons between layers, update through backpropagation

▪ Starts as random number, then optimized during training (epochs) to better values

3



Neural Networks for Predictive Analytics

▪ Neural Networks can be designed for regression or classification by output layer function

▪ Regression Network → Output function: Linear activation function

▪ Classification Network → Output function: Sigmoid (binary classification) or Softmax 
(multiple classification) activation function

▪ Networks require significant amounts of labeled data to correctly map results and generalize 
to unseen data

▪ Feature engineering is automatically handled by the network → layers transform data for you

▪ Networks can estimate non-linear, multi-dimensional decision boundaries and prediction 
functions

4



Visualizing a Simple Dense Network

5

Input Layer 
(3-

Features)
Hidden Layer

(1-Neuron)
Output Layer

(1-Neuron)

Each Input Layer Neuron connects to the 5-
Neurons in the Hidden Layer.
3 × 1 = 3 total connections. 

Each Hidden Layer Neuron connects to 
the 1-Neuron in the Output Layer.

1 × 1 = 1 total connection. 

𝒘𝟏

𝒘𝟐

𝒘𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑
෍

𝒊=𝟏

𝟑

𝒙𝒊 𝒘𝒊



Visualizing a Hidden Layer with Multiple Neurons

6

Input Layer 
(3-Features)

Hidden Layer
(5-Neurons)

Output Layer
(1-Neuron)

Each Input Layer Neuron connects to the 
5-Neurons in the Hidden Layer.
3 × 5 = 15 total connections. 

Each Hidden Layer Neuron connects to the 
1-Neuron in the Output Layer.
5 × 1 = 5 total connections. 



Neural Networks for Content Generation

▪ Convolutional Neural Networks (CNNs) extract features, characteristics, and 
edges from images

▪ Preserves information from nearby pixels in images → spatial associations

▪ Useful for object detection, image segmentation, and classification tasks

▪ Neural Networks are also powerful generative models

▪ Variational Autoencoders (VAEs) learn the distribution that training data come 
from and attempt to generate new observations from learned distribution

▪ Generative Adversarial Networks (GANs) involve a feedback-Network that 
rates the quality of generated observations from the generative Network

▪ Network continues training until it produces output deemed high quality

▪ I
7



Visualizing a Convolutional Neural Network

8



Convolutional Neural Networks (CNNs)

▪ Examines relationships between features using moving windows that shift across 
dataset

▪ Kernels (also called filters) scan vectors (columns) or multi-dimensional arrays (i.e., 
images, matrices) to identify signals, patterns, and edges

▪ Naturally handles unstructured data types → automatic feature extraction

▪ Base layers identify key characteristics / patterns, middle layers target finer-details, 
and last layers focus on fine-tuning to specific task / industry / objective

▪ Designed to recognize patterns, extract meaningful identifiers, and parse data to create 
feature maps from original data

▪ Does not maintain memory of previous inputs → each input assumed independent

9



How Feature Mapping Works

10



Visualizing a Recurrent Neural Network

11



Recurrent Neural Networks (RNNs)

▪ Inputs are assumed dependent on each other → nearby time steps, or words in a 
sequence, are assumed associated (not independent)

▪ RNNs maintain memory and move one-by-one across time steps / words in sequence

▪ RNN takes new input and combines next input with memory (hidden state)

▪ Gives prediction and loop continues, sequentially, until all inputs are exhausted

▪ Suffers from vanishing gradient problem → long-term memory is forgotten and 
information from early hidden states not used

▪ Long Short-Term Memory (LSTM) introduce gates (what info to remember / forget)

▪ Gated Recurrent Units (GRU) are simpler memory managers than LSTMs, faster but 
less complex

12



Exploring the Next Frontier with 
Generative AI Workflows

Harnessing encoder, decoder, and hybrid transformer 

models to create content, capture context, and enable 

reasoning with information retrieval.

Deep Learning Architectures |  Premier Analytics Consulting, LLC

https://www.premier-analytics.com/


Generative AI Architectures

▪ Transformers key to generative AI workflows → parallelize attention layers in neural 

networks and replace sequential networks such as RNNs and LSTMs

▪ Encoder-Only architectures excel at representation learning, embeddings, and 

retrieval; power search, classification, and semantic similarity

▪ Create contextual representations (vector embeddings) from input tokens

▪ Examples include BERT and RoBERTa

▪ Decoder-Only architectures provide autoregressive generation for text, code, 

simulations, and creative tasks; optimized for long-form output

▪ Each output token only focuses on previous token(s), does not see ahead of current 

token → examples include GPT family & LLaMa family 

14



Generative AI Architectures

▪ Encoder-Decoder architectures are ideal for translation, summarization, multimodal 

reasoning; integrate comprehension + generation

▪ Encoder-part transforms input sequence to vector embeddings

▪ Decoder-part consumes vector embeddings and generates output sequence

▪ Encoder-part builds a rich representation by reading entire input sequence and 

transforming into latent (vector) space

▪ Decoder generates tokens one-at-a-time using casual attention to maintain 

sequence order

▪ Unlike Decoder-Only architectures, Encoder-Decoder transformers excel at 

summarization and translation tasks by focusing generation guided by input context

15



Retrieval-Augmented Generation (RAG)

▪ Bridges search + generation: Combines external knowledge retrieval with large 

language models (LLMs) to improve factual accuracy

▪ Retriever module: Fetches relevant documents or embeddings from a vector database 

or search index based on the query

▪ Vector Databases: Purpose-built for storing and searching vector embeddings

▪ Enables fast similarity search and semantic retrieval to power RAG, 

recommendations, and multimodal AI

▪ Generator module: Conditions its response on both the input query and retrieved 

content, ensuring grounded outputs

▪ Good for Q/A systems, chatbots, & technical documentation search

16



Retrieval-Augmented Generation (RAG)

17



Agentic AI Workflow

18



Ryan Paul Lafler

Deep Learning (DL) Architectures 
and Transfer Learning for Tabular, 

Unstructured, Sequential and 
Time-Dependent Data

https://www.premier-analytics.com/

	Slide 1
	Slide 2
	Slide 3: What is Deep Learning (DL)?
	Slide 4: Neural Networks for Predictive Analytics
	Slide 5: Visualizing a Simple Dense Network
	Slide 6: Visualizing a Hidden Layer with Multiple Neurons
	Slide 7: Neural Networks for Content Generation
	Slide 8: Visualizing a Convolutional Neural Network
	Slide 9: Convolutional Neural Networks (CNNs)
	Slide 10: How Feature Mapping Works
	Slide 11: Visualizing a Recurrent Neural Network
	Slide 12: Recurrent Neural Networks (RNNs)
	Slide 13
	Slide 14: Generative AI Architectures
	Slide 15: Generative AI Architectures
	Slide 16: Retrieval-Augmented Generation (RAG)
	Slide 17: Retrieval-Augmented Generation (RAG)
	Slide 18: Agentic AI Workflow
	Slide 19

