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Navigating the AI Landscape: 
Key Concepts and Foundations

Defining Artificial Intelligence (AI), Machine 

Learning (ML), and Deep Learning (DL) and how 

these domains shape analytics in 2025.
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AI vs ML: Understanding the Difference

▪ Artificial Intelligence (AI) is about teaching machines to mimic human decision-making

▪ Examples: rule-based chatbots, game NPCs, or search algorithms

▪ Machine Learning (ML): A subset of AI where systems learn patterns from data

▪ Focus areas: Predictive analytics, data discovery, and robust training & learning 

▪ Domains of Machine Learning:

▪ Supervised Learning: Uses labeled data to predict outcomes

▪ Unsupervised Learning: Finds patterns in unlabeled data 

▪ Semi-Supervised Learning: Combines small labeled sets with large unlabeled data 

for training
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Advantages of AI Systems Built from ML

▪ Dynamic Learning: ML-powered AI adapts rules and models automatically as new data 

becomes available, reducing manual re-programming

▪ Codebases do not need to be manually re-defined → automatically done

▪ Pattern Discovery: Detects hidden trends, anomalies, and insights that humans might 

miss, even in complex datasets

▪ Scalability: Easily scales to large, constantly evolving data sources without needing 

static decision rules

▪ Continuous Improvement: Each interaction or new dataset attempts to improve and 

learn from previous mistakes
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Traditional AI in Action 

▪ Multimedia and Entertainment: 

▪ Recommendation systems for music and video (content filtering by similarity scoring)

▪ Automated image tagging and simple video analytics

▪ Summarization and Translation: 

▪ Basic text classification, spam & keyword filters, and sentiment analysis

▪ Retail and E-Commerce: 

▪ Inventory management and sales forecasting

▪ Clustering products purchased together

▪ Understanding latent (parent) factors influencing consumer behavior
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Traditional AI in Action 

▪ Life Sciences and Healthcare:

▪ Diagnostic support using image classification

▪ Predictive analytics for hospital admissions, staffing needs, and patient trends

▪ Meteorology:

▪ Numerical weather prediction (NWP) models with physics-based simulations

▪ Finance and Risk Management:

▪ Automated credit scoring and fraud detection

▪ Portfolio optimization and algorithmic trading

▪ Risk scoring and portfolio risk analysis
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Scope-Defined AI vs. Generative AI
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▪ Task-Specific Models: Built for narrow tasks 

(classification, recommendation)

▪ Fixed Historical Data: Retraining needed for 

updates; models rely heavily on curated 

datasets

▪ Manual Feature Engineering: Requires 

experts to select features and rules

▪ Domain-Specific Expertise: Requires deep 

subject matter knowledge to tune algorithms

▪ Multi-Tasking & Reusability: Adapts to many 

tasks with minimal fine-tuning

▪ Embeddings for Memory: Stores context for 

retrieval, augmentation, and reasoning

▪ Creative Freedom (Temperature): Generates 

unique, dynamic responses (synthetic data)

▪ Zero-Shot Training: Model can perform tasks 

not trained on by leveraging existing info

▪ Reasoning and RAG: Context & justifications

Traditional AI Generative AI



How Deep Learning (DL) Powers Generative AI

▪ Representation Learning: Neural networks automatically learn hierarchical features from 

raw data, automating feature engineering

▪ Scalability: Trains on massive datasets with GPUs/TPUs → improves generalization

▪ Transfer Learning: Fine-tune pre-trained models for new domains / tasks with minimal data

▪ Multimodality: Processes text, images, video, & audio together for cross-domain reasoning

▪ Transformer Architectures: Attention mechanisms for long-range context & reasoning
10

Deep learning (DL) powers the leap to Generative AI by automatically learning 

representations, scaling for big data, and enabling transfer learning, multimodal 

reasoning, and creative synthesis through neural networks and transformers.



Multimodal Generative AI in Action 

▪ Multimedia and Entertainment: 

▪ Generate scripts, music, and visuals; upscale images; automate captions and dubbing

▪ Summarization and Translation: 

▪ Summarize text, translate languages, and write rich image descriptions

▪ Retail and E-Commerce: 

▪ Deliver personalized recommendations, intelligent shopping assistants, and agents that 

summarize and answer questions personalized to any product

▪ Software and IT: 

▪ Generate, refactor, and debug code; automate documentation and database queries
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Multimodal Generative AI in Action 

▪ Life Sciences and Healthcare:

▪ Analyze scans, generate synthetic medical data, and explain patient outcomes

▪ Meteorology:

▪ Downscale forecasts, deliver localized real-time weather summaries, and power severe 

weather alert systems

▪ Finance and Risk Management:

▪ Fraud detection, risk assessment, automated compliance reporting, financial forecasting, 

personalized insurance policy recommendations, and synthetic data generation for model 

training
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Key AI Domains Used in Industry and Research
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▪ Pre-programmed algorithms for 

classification, regression, 

forecasting, ranking, and 

survival analysis (with censoring)

▪ Requires labeled data with set of 

predictors mapped to target 

feature(s) given a loss function 

(learns from ground truth)

▪ Algorithms possess 

hyperparameters that define 

structure of supervised 

algorithms → must be optimized

Supervised ML

▪ Pre-programmed algorithms for 

data compression, reduction, 

clustering, similarity scoring, 

and association analysis

▪ Can mine raw and unprocessed 

data to reveal structure, extract 

insights, and uncover patterns → 

no ground truth necessary

▪ Algorithms contain 

hyperparameters that are 

chosen based on domain 

knowledge or some metric

Unsupervised ML

▪ Builds on ML and DL to generate 

new data, content, or patterns 

(e.g., text, images, code, 

simulations)

▪ Excels at retrieval-augmented 

generation (RAG), contextual 

understanding, and creative 

synthesis

▪ Adapts to multiple domains with 

prompt engineering, transfer 

learning, and layer fine-tuning 

→ reduces re-training needs

Generative AI



Supervised Learning: The Engine 
Behind Predictive Workflows

Leveraging labeled datasets, hyperparameter 

optimization, and diverse algorithms for 

classification, regression, and ranking in production.
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Supervised ML and Predictive Analytics

▪ Supervised algorithms train from labeled data, iteratively improve and adjust internal 

parameters (weights) to minimize some objective (loss) function

▪ Assumptions and hyperparameters constrain the flexibility of ML algorithms and define 

their internal structure

▪ Linear Regression assumes dependent (target) variable is normally distributed

▪ Decision Tree makes no assumptions about data (very flexible algorithms)

▪ Model non-linear relationships and can be constrained by hyperparameters

▪ Support Vector Machine (SVM) can model high dimensional data with few 

observations (wide datasets)
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Mitigating Overfitting & Underfitting 

▪ Supervised algorithms require labeled data to learn from the ground truth

▪ Predictors mapped to target feature(s) by splitting data into training and testing sets

▪ Algorithms are trained on training set; testing set used for evaluation

▪ Overfitting: Model is too sensitive (too flexible) to changes in data and quickly adapts

▪ Referred to as high variance → Hyperparameters fail to regularize model 

complexity

▪ Underfitting: Model is too rigid (too constrained) and does not adapt to changes in 

data

▪ Referred to as high bias → Assumptions / hyperparameters are too restrictive
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Tradeoff Between Interpretability & Complexity

▪ Model complexity increases flexibility and accuracy but reduces interpretability, making it 

harder to explain decisions

▪ Multiple Linear Regression allows us to understand effects of predictors on target feature

▪ Can evaluate partial slopes (weights) of each factor, interaction term, or higher-order 

term to know effects on target feature → we assume linear relationship

▪ Decision Tree is branching if-else structure → tree splits on best feature to make 

prediction

▪ No assumptions on data → can model non-linear relationships while still being 

interpretable (middle-ground)

▪ Neural Networks can model complex relationships but are “black boxes” 
17



Charting Your Supervised ML Roadmap
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Fine-Tuning and Evaluating Algorithms

▪ Hyperparameters need to be fine-tuned from search space → we need a good recipe 

for gathering ingredients and cooking each ML algorithm

▪ Grid Search: List combinations of hyperparameter values to train models & test

▪ Randomized Search: Randomly select hyperparameter values from list or 

distributions to train models & test

▪ Bayesian Search: Randomly select values to start but then focus on improving 

hyperparameter values iteratively after models are trained

▪ K-Folds Cross-Validation partitions data into K-number of folds where (K-1) Folds used 

for training and 1-fold for testing

▪ Great approach for data of all sizes → tests multiple models instead of 1
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Hyperparameters of a Decision Tree
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Driving Data Discovery with 
Unsupervised Learning

Training algorithms to group, compress, detect 

anomalies, reveal patterns, and uncover 

relationships on unprocessed data without labels.
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Data Discovery with Unsupervised ML

▪ No Labels Required: Learns patterns directly from raw, unprocessed data → no target 

labels or explicit outputs needed

▪ Insight Generator: Finds hidden structures, trends, and relationships in large, unlabeled 

datasets → many techniques adapted from signal processing

▪ Signal from Noise: Isolate and identify signal (attributes giving most variance) from 

randomness (noise) inherent to all data structures

▪ Data-Hungry Approach: Requires substantial volumes of raw data to uncover reliable 

and meaningful insights

▪ Representation Extraction: Encode features into more processable inputs to models
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Unsupervised ML Techniques at a Glance

▪ Clustering: Identifies and groups similar observations to uncover natural data structure

▪ Dimensionality Reduction: Transforms complex, high-dimensional datasets into key 

components for easier visualization and analysis

▪ Latent Relationship Discovery: Reveals hidden relationships between features to better 

understand data structure

▪ Generative Potential: Learns data distributions for simulation, augmentation, and 

synthetic data creation

▪ Autoencoders: Compress data into an intermediate (“latent”) space to extract essential 

patterns and representations
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Clustering: K-Means, Hierarchical, & DBSCAN

▪ Clustering: Group data points by similarity to uncover structure in unlabeled datasets

▪ K-Means

▪ Partitions data into k clusters by minimizing distance to cluster centroids

▪ Simple, fast, and works well with spherical clusters

▪ Hierarchical

▪ Builds a tree of clusters (dendrogram) by iteratively merging or splitting groups

▪ Great for visualizing data structure, relationships, & nested clusters

▪ DBSCAN

▪ Finds clusters based on data density; identifies outliers as noise

▪ Works well for irregularly shaped clusters and uneven densities
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Hierarchical Clustering using a Dendrogram
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K-Means Clustering with Centroids
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DBSCAN Clustering to Uncover Distributions
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Dimensionality Reduction & Distribution Modeling
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▪ Reduces high-dimensional data into key 

components while preserving structure

▪ PCA: Captures maximum variance directions 

for visualization & compression

▪ LLE & IsoMap: Preserve non-linear manifold 

structure for better pattern discovery

▪ Enables clustering & pattern recognition by 

removing noise and redundancy

▪ Models datasets as a mixture of multiple 

Gaussian distributions (number is unknown)

▪ Provides probabilistic cluster assignments 

(soft clustering) for greater flexibility

▪ Unlike K-Means, assigns probabilities (not 

distance metric) for membership in multiple 

clusters

▪ Learns underlying density of data → enables 

simulation and synthetic data generation

Dimensionality Reduction Gaussian Mixture Models (GMMs)



Dimensionality Reduction & Data Compression
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Gaussian Mixture Model (GMM) in 3D-Space
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Exploring the Next Frontier with 
Generative AI Workflows

Harnessing encoder, decoder, and hybrid transformer 

models to create content, capture context, and 

enable reasoning and information retrieval.
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Generative AI Architectures

▪ Transformers key to generative AI workflows → parallelize attention layers in neural 

networks and replace sequential networks such as RNNs and LSTMs

▪ Encoder-Only architectures excel at representation learning, embeddings, and 

retrieval; power search, classification, and semantic similarity

▪ Create contextual representations (vector embeddings) from input tokens

▪ Examples include BERT and RoBERTa

▪ Decoder-Only architectures provide autoregressive generation for text, code, 

simulations, and creative tasks; optimized for long-form output

▪ Each output token only focuses on previous token(s), does not see ahead of current 

token → examples include GPT family & LLaMa family 
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Generative AI Architectures

▪ Encoder-Decoder architectures are ideal for translation, summarization, multimodal 

reasoning; integrate comprehension + generation

▪ Encoder-part transforms input sequence to vector embeddings

▪ Decoder-part consumes vector embeddings and generates output sequence

▪ Encoder-part builds a rich representation by reading entire input sequence and 

transforming into latent (vector) space

▪ Decoder generates tokens one-at-a-time using casual attention to maintain 

sequence order

▪ Unlike Decoder-Only architectures, Encoder-Decoder transformers excel at 

summarization and translation tasks by focusing generation guided by input context

33



Retrieval-Augmented Generation (RAG)

▪ Bridges search + generation: Combines external knowledge retrieval with large 

language models (LLMs) to improve factual accuracy

▪ Retriever module: Fetches relevant documents or embeddings from a vector database 

or search index based on the query

▪ Vector Databases: Purpose-built for storing and searching vector embeddings

▪ Enables fast similarity search and semantic retrieval to power RAG, 

recommendations, and multimodal AI

▪ Generator module: Conditions its response on both the input query and retrieved 

content, ensuring grounded outputs

▪ Good for Q/A systems, chatbots, & technical documentation search
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Retrieval-Augmented Generation (RAG)
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